If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-16x-356=0
a = 4; b = -16; c = -356;
Δ = b2-4ac
Δ = -162-4·4·(-356)
Δ = 5952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5952}=\sqrt{64*93}=\sqrt{64}*\sqrt{93}=8\sqrt{93}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{93}}{2*4}=\frac{16-8\sqrt{93}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{93}}{2*4}=\frac{16+8\sqrt{93}}{8} $
| 5x+18+3x-2-4x=2x+24 | | (x-5)(x-2)(x+3)=0 | | 10(-10+n)=-180 | | 6-12x+15=7 | | -7+m/9=-6 | | 8-4p=72 | | |n+8|=15 | | -3b+7b=-20.5 | | F(x)=-16x+8 | | 2^x-3=8^4x | | 21+3=35y | | 365x=1000x | | 10x-8=8x-8 | | 16*p=208 | | 71=10n+1 | | x^2+27.9x+217.9=0 | | 3x-2=6=x | | 8^3x-2=2^2x+7 | | 4-3=-6h | | 2c(4c+3)^2=0 | | (2x+22)=(6x+6) | | 9x–4+4x=+5x+19 | | 11y+15=81 | | V^2-56x=0 | | 6x=6x+0,5 | | 0=x^-15x+36 | | 4x+1-x=10 | | -3+7x-5-3x=8 | | 4x-11=2x+8 | | 1+c=2 | | 12+23=21=c | | 5=4x^2 |